
Simplicity Bias in Transformers and their Ability
to Learn Sparse Boolean Functions

Satwik Bhattamishra▲ Arkil Patel■ Varun Kanade▲ Phil Blunsom▲¶

 ▲University of Oxford ■Mila and McGill ¶ Cohere

Premise and Motivation

● On NLP tasks (large) Transformers generalize well and are the dominant architecture

● Transformers are limited in expressing certain formal languages compared to RNNs

● Transformers perform worse than RNNs on certain formal languages [1, 2]

Why do Transformers with large capacity generalize well in practice?

Why do Transformers perform well given their limitations in modelling formal languages?

[1] On the Ability and Limitations of Transformers to Recognize Formal Languages. EMNLP 2020. Satwik Bhattamishra, Kabir Ahuja, Navin Goyal
[2]Neural networks and the chomsky hierarchy. ICLR 2023. Delétang, Grégoire, Anian Ruoss, … , Pedro A. Ortega.

Why deep learning generalizes well?

● Deep learning models can express a large class of functions

○ Have large capacity measure: VC dimension, Rademacher complexity, etc

● Given a set of examples S, there are many different parameterizations of a

network that can achieve 0% training error but arbitrary test error

● However, large neural networks typically learn functions which generalize well

Example

A linearly separable set of
labelled examples

Example

A linearly separable set of
labelled examples

Can be labelled perfectly by
a linear classifier

Example

A linearly separable set of
labelled examples

Neural Networks are also
capable of achieving 0%
training error by converging
to other types of functions

Example

A linearly separable set of
labelled examples

Neural Networks are also
capable of achieving 0%
training error by converging
to other types of functions

Example

A linearly separable set of
labelled examples

Neural Networks are also
capable of achieving 0%
training error by converging
to other types of functions

Example

A linearly separable set of
labelled examples

But they typically learn a
simple function more similar
to the target

Why Deep learning generalizes well?

● There is some form of implicit regularization in Neural Networks (Simplicity bias)

● Hypotheses

○ SGD has some beneficial properties [1, 2]

○ Volume hypothesis: Parameter space of NNs are dominated by low complexity functions [3, 4]

● If most of the functions in the parameter space of a model are low complexity functions,

then any local search based optimizer is more likely to find a low complexity function

[1] Implicit Regularization in Deep Matrix Factorization. Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo. Neurips 2019.
[2] SGD Noise and Implicit Low-Rank Bias in Deep Neural Networks. Galanti, T, Poggio, T. 2022
[3] Is SGD a Bayesian sampler? Well, almost. Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis. JMLR 2021
[4] Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent. ICLR 2023

Preliminaries

● We work with Boolean functions f: {0, 1}n -> {0, 1}

● Focus on a complexity measure called sensitivity: indicates how likely it is that a

function value will change due to some small change in input

Parity-n : Input:= 100001001 - label : 1
Parity over length n has sensitivity 1
k-sparse parity over length n has sensitivity k/n

Why sensitivity?

● Function of Lower sensitivity => Simpler Function

○ Simpler functions are more likely to generalize

● Lower sensitivity function => Lower Kolmogorov Complexity (+ other measures)

● Lower sensitivity function => Lower generalization error [1] (?)

● Practical NLP tasks have low* sensitivity [2]

● Can be approximated by sampling

[1] Sensitivity and Generalization in Neural Networks: an Empirical Study. ICLR 2019. Roman Novak, Yasaman Bahri, …
[2] Sensitivity as a Complexity Measure for Sequence Classification Tasks. TACL 2021. Michael Hahn, Dan Jurafsky, Richard Futrell

Parameter function map

Parameter function map

Monte Carlo Method

Sample N Transformers or
LSTMs using an initialization
method (Uniform, Xavier
normal, etc).

Estimate the sensitivity of each
of the sampled models to obtain
the distribution.

Sensitivity distribution of Random Transformers and LSTMs

Sample N Transformers or LSTMs
using an initialization method
(Uniform, Xavier normal, etc).

Estimate the sensitivity of each of
the sampled models to obtain the
distribution.

Input lengths: 20
Models: 2 Layers, 256 Width
Parameters uniformly in [-10, +10]p

Sensitivity distribution of Random Transformers and LSTMs

● Functions of low sensitivity are overrepresented in the parameter space
of Transformers

Finding Parity

Parameter function map

Sampling-based Learning Algorithm

Bayesian Sampler

Is SGD a Bayesian sampler?

[1] Is SGD a Bayesian sampler? Well, almost. Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis. JMLR 2021

Mingard et. al. [1] compares the distribution
P

B
(f|S) and P

SGD
(f|S) across a range of

architectures and datasets and find that
they are highly correlated

Fig: Comparing the predictions of sampling
based algo and SGD ≈1 million times on 100
examples.

Sampling ≈ SGD performance

[1] Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent
Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, Tom Goldstein. ICLR 2023

Chiang et. al. [1] compare the performance
of networks trained using the sampling
algorithm with that of SGD on datasets like
MNIST, CIFAR-10 etc.

They find both algorithms lead to similar
test-accuracy indicating that gradient
dynamics are not the primary source of
regularization

Sampling ≈ SGD performance

[1] Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent
Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, Tom Goldstein. ICLR 2023

Chiang et. al. [1] apply a more fancy pattern-search algorithm (no gradients) to fit
sample sets of larger size and they perform competitively with SGD

Sensitivity during Training

Training on Random Boolean functions

● What kind of functions do models converge after getting 0 error on training data

● Training data

○ 1000 Examples: Uniformly sampled over {0, 1}n

○ Each examples is labelled 0 or 1 uniformly at random

○ Transformers and LSTMs are trained until they reach 0% training error

● Estimate the sensitivity at different iterations of training

Sensitivity during Training

Sensitivity of functions represented by
Transformers and LSTMs at different
stages of training when trained on data
labelled by a random Boolean function.

While both achieve 0% train error,
Transformer converge to functions of
lower sensitivity.

Observation is reminiscent of [1, 2]

[1] SGD on Neural Networks Learns Functions of Increasing Complexity. Nakkiran et al., Neurips 2019
[2] On the Spectral Bias of Neural Networks. Rahaman et al., ICML 2019

Sensitivity during Training

Sensitivity of functions represented by
Transformers and LSTMs at different
stages of training when trained on data
labelled by a random Boolean function.

While both achieve 0% train error,
Transformer converge to functions of
lower sensitivity.

Sensitivity during Training

● Apply an extension of Boolean sensitivity for

models trained on natural language data

● Both Transformers and LSTMs learn functions of

increasing sensitivity during training

● Both of them achieve similar test accuracy

● Similar Observations on the IMDB dataset

Performance on Sparse Boolean Functions

Performance on Boolean Functions

● Motivated by the differences described earlier, we compare the performance of

Transformers and LSTMs on learning well-known sparse Boolean functions

● Sparse Boolean functions have low sensitivity (and low complexity based on

other measures)

● We find that Transformers outperform LSTMs on several types of sparse

Boolean functions.

K-Sparse functions

Task: Standard Binary Classification

Fixed sized Training sets: 10k - 50k

Input distribution: Uniform over {0, 1}n

Outputs: Sample a function from a class
(K-sparse, Parities, etc)

Tune hyperparameters to find
best-performing models

Performance on K-Sparse Functions

K-sparse functions: Output depends on
at most k-bits of the input

Upper: Transformers generalise well
even with 10% label noise during
training

Lower: LSTMs seem to overfit on the
training data and generalize poorly

Performance on K-Sparse Functions

K-sparse functions: Output depends on
at most k-bits of the input

Both Transformers and LSTMs learn
functions of increasing sensitivity

Transformers converge to functions
with the same sensitivity as the target
function

LSTMs learn functions of higher
sensitivity than the target function

Performance on Sparse Parities

Transformers on Sparse Parities

Performance on Sparse Parities

LSTMs on Sparse Parities

Remarks on Learning Parities

● Learning Parities is known to be a hard problem

○ Efficiently learnable in the PAC model

○ Requires nΩ(k) queries in a restricted model of learning

● NNs such as Transformers can only learn Sparse parities for small values of n and k

● For smaller n (e.g. 20) and k, LSTMs succeed in learning Sparse Parities as well

● See [1] which explores how FFNs learn Parities theoretically

[1] Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham
Kakade, Eran Malach, Cyril Zhang. Neurips 2022

● Mixed Parity dataset:

○ 50% labelled by Sparse Parity

○ 50% labelled by Parity-n

● Evaluated separately on each Task

● Transformers

○ 100% acc. on Sparse Parity

○ 50% acc. on Parity-n

● LSTMs

○ 50% acc. on Sparse Parity

○ 100% acc. on Parity-n

Performance on Mixed Parities Dataset

Summary

● Functions of low sensitivity are overrepresented in the parameter space of Transformers

● Both Transformers and LSTMs learn functions of increasing sensitivity

● Transformers typically converge to functions of lower sensitivity than LSTMs (*on

Boolean functions)

● On several K-sparse functions, Transformers generalize well whereas LSTMs overfit on

the training set

Thank you!

