Simplicity Bias in Transformers and their Ability
to Learn Sparse Boolean Functions

Satwik Bhattamishra* Arkil Patel® Varun Kanade4 Phil BlunsomA?

AUniversity of Oxford ®"Mila and McGill 1Cohere



Premise and Motivation

e OnNLP tasks (large) Transformers generalize well and are the dominant architecture
e Transformers are limited in expressing certain formal languages compared to RNNs

e Transformers perform worse than RNNs on certain formal languages [1, 2]

Why do Transformers with large capacity generalize well in practice?

Why do Transformers perform well given their limitations in modelling formal languages?

[1] On the Ability and Limitations of Transformers to Recognize Formal Languages. EMNLP 2020. Satwik Bhattamishra, Kabir Ahuja, Navin Goyal
[2]Neural networks and the chomsky hierarchy. ICLR 2023. Delétang, Grégoire, Anian Ruoss, ..., Pedro A. Ortega.



Why deep learning generalizes well?

e Deep learning models can express a large class of functions
o Have large capacity measure: VC dimension, Rademacher complexity, etc

e Given aset of examples S, there are many different parameterizations of a
network that can achieve 0% training error but arbitrary test error

e However, large neural networks typically learn functions which generalize well



Example

O A linearly separable set of
0 labelled examples
0 0 O
o © ¢ ¢
O
o o 9 90
O O
0 . 5 O
O




Example

A linearly separable set of
labelled examples

Can be labelled perfectly by
a linear classifier




Example

A linearly separable set of
labelled examples

Neural Networks are also
capable of achieving 0%
training error by converging
to other types of functions



Example

A linearly separable set of
labelled examples

Neural Networks are also
capable of achieving 0%
training error by converging
to other types of functions



Example

A linearly separable set of
labelled examples

Neural Networks are also
capable of achieving 0%
training error by converging
to other types of functions



Example

A linearly separable set of
labelled examples

But they typically learn a
simple function more similar
to the target




Why Deep learning generalizes well?

e Thereis some form of implicit regularization in Neural Networks (Simplicity bias)

e Hypotheses
o  SGD has some beneficial properties [1, 2]
o  Volume hypothesis: Parameter space of NNs are dominated by low complexity functions [3, 4]

e If most of the functions in the parameter space of a model are low complexity functions,

then any local search based optimizer is more likely to find a low complexity function

[1] Implicit Regularization in Deep Matrix Factorization. Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo. Neurips 2019.

[2] SGD Noise and Implicit Low-Rank Bias in Deep Neural Networks. Galanti, T, Poggio, T. 2022

[3] Is SGD a Bayesian sampler? Well, almost. Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis. JMLR 2021

[4] Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent. ICLR 2023



Preliminaries

e We work with Boolean functions f: {0, 1}" -> {0, 1}
e Focus onacomplexity measure called sensitivity: indicates how likely it is that a

function value will change due to some small change in input
s(fyx) =Y _I[f(z) # f(z®)],
i=1
S(f)= Pr  [f(z)# f(z®)]

2~{0,1}7.i~[n]

Parity-n: Input:= 100001001 - label : 1
Parity over length n has sensitivity 1
k-sparse parity over length n has sensitivity k/n



Why sensitivity?

e Function of Lower sensitivity => Simpler Function
o Simpler functions are more likely to generalize

e Lower sensitivity function => Lower Kolmogorov Complexity (+ other measures)
e Lower sensitivity function => Lower generalization error [1] (?)
e Practical NLP tasks have low* sensitivity [2]

e Can be approximated by sampling

[1] Sensitivity and Generalization in Neural Networks: an Empirical Study. ICLR 2019. Roman Novak, Yasaman Bahri, ...
[2] Sensitivity as a Complexity Measure for Sequence Classification Tasks. TACL 2021. Michael Hahn, Dan Jurafsky, Richard Futrell



Parameter function map

+1

0 =[-1,1]?

o

©

+1

x1 = 000
x99 = 001
x3 = 010
Tos = 111

///////;;7 fo:{0,1}" — {0,1}

: f0($1)
3fb($2)
ifb($3)

: fo(xgs)



Parameter function map

/ fo:{0,1}" — {0,1} Monte Carlo Method

+1 / z1 = 000 : fo(z1) Sample N.Transf.orjn)e.rs or
zo = 001 : fo(z2) LSTMs using an initialization

23 = 010 : fo(zs3) method (Uniform, Xavier
. normal, etc).

©=[-1,1°

0, @

Estimate the sensitivity of each
of the sampled models to obtain
the distribution.

L93 — 111 : f9($23)




Sensitivity distribution of Random Transformers and LSTMs

Sensitivity Distribution: Uniform Initialization
Sample N Transformers or LSTMs
=i 5T using an |n|t|a!|zat|on method
(Uniform, Xavier normal, etc).

mm Transformer

Estimate the sensitivity of each of
the sampled models to obtain the
distribution.

Normalized Frequency

Input lengths: 20
A i1 55 s o o Models: 2 Layers, 256 Width
' " Average Sensitivity ' Parameters uniformly in [-10, +10]°




Sensitivity distribution of Random Transformers and LSTMs

e Functions of low sensitivity are overrepresented in the parameter space

of Transformers
Sensitivity Distribution: Gaussian Initialization Sensitivity Distribution: Xavier Normal
[ Transformer B Transformer
> = LST™M > mm LSTM
@] [®)
C C
9] 9]
=) -}
o o
b g
=
L [
o) o]
N &
© ©
£ €
— [ -
S o
= =
0.0 0.1 0.2 0.3 0.4 0.5 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Average Sensitivity Average Sensitivity



Finding Parity

F={f1f:{0,1}" — {0,1}}
Parity-5 outputs 1 if number of 1s in the input is odd and 0 otherwise.

There are 22" functions over {0,1}°

If we sample uniformly over all 22’ functions, the probably of obtaining a Parity-5
function is less than 1 in a Billion

On uniformly sampling 2-layer LSTMs 10 million times, we find 1 in 30k of them
represent a Parity-5 function.

On sampling Transformers 10 million times, none of them represented a function
in Parity-5



Parameter function map

+1

0 =[-1,1]?

o

©

+1

x1 = 000
x99 = 001
x3 = 010
Tos = 111

///////;;7 fo:{0,1}" — {0,1}

: f0($1)
3fb($2)
ifb($3)

: fo(xgs)






Sampling-based Learning Algorithm

Given Samples S = ((:Irl,y1), (wz,yz), ceey (aﬁm,ym))

1. Sample model fy uniformly over [—1, 1|7
2. If fq is consistent with .S return fy
3. Else Go to step 1

P(f) = Probability of obtaining function f on sampling a model

P(f|S) := Probability of obtaining f conditioned on the event
that f is consistent with .S



Bayesian Sampler

S = ((5131, y1)7 (5132,y2), I (xma ym))

P(f) := Prior
P(f|S) := Posterior
For a fixed traini , all variations i
pa(sis) - ZE0P0 P(f15) comes from ihe prior (1)
P(f)

=0 PO U(8) =171 #@) =¥ ¥(=m,3) € 5}



|s SGD a Bayesian sampler?

Lo - EEN SR ESIE TIoE 1SS Mingard et. al.[1] compares the distribution
g {| Error (of 100) . P.(f|S) and P (f[S) across a range of
% 101 4 : (1) : architectures and datasets and find that
i : 2 o 6 F they are highly correlated
2 1024 = (N )
- — PrL. Fig: Comparing the predictions of sampling
> Y based algo and SGD =1 million times on 100
® so-a
5 107 ..‘i » examples.
ey 1| S~ EEAeRe
& | Le:

107> 1074 10 -3 1072 107! 10
P(f| S), SGD, batch size: 32

(a) Pe(f|S) v.s.Psap(f|S)

[1] Is SGD a Bayesian sampler? Well, almost. Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis. JMLR 2021



Sampling = SGD performance

Sample Arch  Optimizer Best Test Acc
Count
32 LeNet G&C 93.02%+0.27%
LeNet SGD 94.04 % +0.25 %
Linear SGD 84.75%+0.47%
16 LeNet G&C 89.21%+0.47%
LeNet SGD 91.24% +0.40 %
Linear SGD 80.68%+0.55%
8 LeNet G&C 83.05%+0.67%
LeNet SGD 84.82%+0.63 %
Linear SGD 74.29%+0.72%
4 LeNet G&C 76.28%+0.90%
LeNet SGD 77.35%+0.81%
Linear SGD 65.12%+0.81%
2 LeNet G&C 66.89%+1.04%
LeNet SGD 69.67 % +0.98 %
Linear SGD 58.93%+0.94%

Chiang et. al.[1] compare the performance
of networks trained using the sampling
algorithm with that of SGD on datasets like
MNIST, CIFAR-10 etc.

They find both algorithms lead to similar
test-accuracy indicating that gradient
dynamics are not the primary source of
regularization

[1] Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent
Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, Tom Goldstein. ICLR 2023



Sampling = SGD performance

Sample Count 1000 500 300

MNIST SGD 93.46%+0.11%  90.15%+0.22%  87.48 %+0.26 %
Pattern Search 93.68%+0.12% 90.33%+0.12%  87.26%+0.30%
Random Greedy 93.34%+0.08%  90.35%%0.10% 87.33%+0.21%

CIFAR-10 SGD 36.01%+0.25% 29.91%+0.31%  25.88%+0.34 %
Pattern Search - 30.00%+0.69% 25.04%+0.66%
Random Greedy 34.44%+0.54%  27.06%+0.75%  24.04%+0.58%

Chiang et. al.[1] apply a more fancy pattern-search algorithm (no gradients) to fit
sample sets of larger size and they perform competitively with SGD

[1] Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent
Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, Tom Goldstein. ICLR 2023



Sensitivity during Training



Training on Random Boolean functions

e What kind of functions do models converge after getting O error on training data

e Trainingdata

o 1000 Examples: Uniformly sampled over {0, 1}"
o Eachexamplesis labelled O or 1 uniformly at random

o  Transformers and LSTMs are trained until they reach 0% training error

e Estimate the sensitivity at different iterations of training



Sensitivity during Training

Average Sensitivity During Training Sensitivity of functions represented by
Transformers and LSTMs at different

stages of training when trained on data
labelled by a random Boolean function.

While both achieve 0% train error,
Transformer converge to functions of
lower sensitivity.

Average Sensitivity
o
G

— LSTM
—— Transformer

Observation is reminiscent of [1, 2]

0 250 500 750 1000 1250 1500 1750 2000
Epochs

[1] SGD on Neural Networks Learns Functions of Increasing Complexity. Nakkiran et al., Neurips 2019
[2] On the Spectral Bias of Neural Networks. Rahaman et al., ICML 2019



Sensitivity during Training

Sensitivity Distribution after Convergence

Transformer
LST™M

Normalized Frequency

010 015 020 025 030 035
Average Sensitivity

Figure 4: Distribution of sensitivity of Transformers
and LSTMs trained on Boolean strings with random
labels. Refer to Section 4.2 for details.

Sensitivity of functions represented by
Transformers and LSTMs at different

stages of training when trained on data
labelled by a random Boolean function.

While both achieve 0% train error,
Transformer converge to functions of
lower sensitivity.



Sensitivity during Training

. . e
I rm— Apply an extension of Boolean sensitivity for

0.10 models trained on natural language data
s 3
2 0.087 e Both Transformers and LSTMs learn functions of
[%2]
o -
G 0067 increasing sensitivity during training
© ]
-Q . . .
g DR e Both of them achieve similar test accuracy
©
2 0027 p——-— e Similar Observations on the IMDB dataset

1 LSTM
0.00 4
(I) 1'0 2l0 3l0 4l0 SIO

Epochs



Performance on Sparse Boolean Functions



Performance on Boolean Functions

e Motivated by the differences described earlier, we compare the performance of
Transformers and LSTMs on learning well-known sparse Boolean functions

e Sparse Boolean functions have low sensitivity (and low complexity based on

other measures)

e We find that Transformers outperform LSTMs on several types of sparse

Boolean functions.



K-Sparse functions

fk : {O, 1}n N {O, 1} |K-sparse| ~ (k>22k Task: Standard Binary Classification

Fixed sized Training sets: 10k - 50k
Input distribution: Uniform over {0, 1}"

1
/[\ Outputs: Sample a function from a class
f (;U (K-sparse, Parities, etc)

Tune hyperparameters to find
best-performing models

0o10101011 10100

Output Depends on at most k input bits



Performance on K-Sparse Functions

Transformers Transformers

oo 20 K-sparse functions: Output depends on
gee at most k-bits of the input
" ;.
g S Upper: Transformers generalise well

e —— Tl even with 10% label noise during

Epochs Epochs trainlng

il Lower: LSTMs seem to overfit on the
g oo training data and generalize poorly
:;) 0.7 § 0.7 &: = —
‘g 0.6 EO-G' ﬁt =~ <o -
F o054 = 059

>
0 200 400 Epﬁoo‘o:hs 800 1000 1200 0 200 400 600 800 1000 1200

Epochs



Performance on K-Sparse Functions

Sensitivity During Training - K-Sparse Functions

e
N
o

o
N
=}

e
=
o

Average Sensitivity

LSTM
—— Transformer

0 100 200 300 400 500
Epochs

K-sparse functions: Output depends on
at most k-bits of the input

Both Transformers and LSTMs learn
functions of increasing sensitivity

Transformers converge to functions
with the same sensitivity as the target
function

LSTMs learn functions of higher
sensitivity than the target function



Performance on Sparse Parities

Transformers on Parity-(40,4) Transformers on Parity-(40,4)

=
=}
=
=}
1

l — ] |

o
©
(
o
©
1

o
©
o
©
1

o
o
o
o
1

Train Accuracy (%)

[ —

. adEEg—

o
5]

o
o]
1

Validation Accuracy (%

iy

T T T T T T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400
Epochs Epochs

o

IS
o
IS

T T T
500 600 700

Transformers on Sparse Parities



Performance on Sparse Parities

LSTMs on Parity-(40,4) LSTMs on Parity-(40,4)

Ling
=3

y e

- 1.0
X
=09 < 0.9
> >
- ()
>o038 Cos
3
5 5
= |
g o7 o7
< S
c 06 S 06
‘© (©
2 ke
Fos =05
>
0.4 T T T T T T T T T 0.4 T T T T T T T T T
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Epochs Epochs

LSTMs on Sparse Parities



Remarks on Learning Parities

e Learning Parities is known to be a hard problem

o Efficiently learnable in the PAC model

o Requires ¥ queries in a restricted model of learning

e NNssuch as Transformers can only learn Sparse parities for small values of n and k
e Forsmallern(e.g.20) and k, LSTMs succeed in learning Sparse Parities as well

e See[1] which explores how FFNs learn Parities theoretically

[1] Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham
Kakade, Eran Malach, Cyril Zhang. Neurips 2022






Performance on Mixed Parities Dataset

Transformers LSTM (]

2
°
3
e
o
3

{4
"
o
0
n

e

®
ol
®

~
1

S
1

Train Accuracy (%)
Train Accuracy (%)

o o o o
’Y n

o o )

o B

\\\ |
§
{
i
|
i
i

S £
=

T T T T T T T
0 10000 20000 30000 40000 0 200

400 600 800
Epochs

Figure 21: Training curves for Transformers and
LSTMs trained on the Mixed Parity dataset (length

n=30) with 15k training examples. Refer to Section
E for details.

Mixed Parity dataset:
o 50% labelled by Sparse Parity
o 50% labelled by Parity-n

Evaluated separately on each Task
Transformers
o  100% acc. on Sparse Parity
o 50% acc.on Parity-n
LSTMs
o 50% acc.on Sparse Parity
o  100% acc. on Parity-n



Summary

e Functions of low sensitivity are overrepresented in the parameter space of Transformers
e Both Transformers and LSTMs learn functions of increasing sensitivity
e Transformers typically converge to functions of lower sensitivity than LSTMs (*on

Boolean functions)

e Onseveral K-sparse functions, Transformers generalize well whereas LSTMs overfit on

the training set



Thank you!



