On the Ability of Neural Sequence Models
to Recognize Formal Languages

Satwik Bhattamishra

Microsoft Research India

B® Microsoft

The Chomsky Hierarchy

Analysis on Formal languages

e Ability of networks such as RNNs and Transformers to recognize regular
languages, context-free languages, etc.

e Provide us a controlled setting to understand a network’s ability to model
syntactic properties in isolation.

e Given a sequence s, classify whether s belongs to a language L or not.

e Inferences can be drawn only about syntax.

Examples of Formal Languages

e Reqular
o Parity : 110010101 (number of ones are always even)
o Recognizable by finite automata
o Representable by regular expressions
e Context-free
o a"b"
o Dyck-1:(()())()

m Compare the number of open open and closed parenthesis

o Dyck-2:[()[11()
m Also track the type of brackets

Natural and Formal Languages

—]

They say all the prayers those priests preach, and the boy hears were written centuries ago.

nllinllinl

[T CLC)y 1) [()]

Figure 1: Nested dependencies in English sentences and in Dyck-2.

Background
Computational Power
e EXxpressiveness
e Learnability

e Learning and Generalization in practice

RNNs

y h; = fW(ht—la «’Bt)

|
m> Ry = tanh(Whhht_l =n W,L.ha:t)

!
X U = Whyh't

Transformer

Output
Probabilities

Linear

)

Feed

Forward

/ | Add & Norm ;
(> Add & Norm J Mult-Head
Feed Attention
Forward P Nx
oo > Decoder

ncoder N =t L
< —(Add&Nom) —=

Multi-Head Multi-Head

Attention Attention

1t 1t

] J U —
\ Positional D @ Positional
Encoding Encoding /

Input Output

Embedding Embedding

Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Results for RNNs

e On the Practical Ability of Recurrent Neural Networks to Recognize Hierarchical Languages. COLING 2020

Background: RNNs

e Work in late 20th Century
o Different Variants - NARX, Cascade Correlation, EIman RNNs

o TC results (Siegelmann and Sontag, 1992)
o Regular language in finite precision (Giles, 1995)

o Several Other works (Kolen and Kremer, 2001)

1. John F Kolen and Stefan C Kremer. 2001. A field guide to dynamical recurrent networks. John Wiley & Sons.
2. Siegelmann, Hava T., and Eduardo D. Sontag. "On the computational power of neural nets." Proceedings of the fifth annual
workshop on Computational learning theory (COLT). 1992.

Recent Results for RNNs/LSTMs

® Recent Works have drawn close connections with counter automata (Merrill et al. 2020)
® Limited Performance on context-free languages (Suzgun et. al.,2019)

e Effective in modeling hierarchical dependencies in natural language data (Gulordova et. al. 2018)

wN =

Merrill, W., Weiss, G., Goldberg, Y., Schwartz, R., Smith, N. A., & Yahav, E. (2020). A Formal Hierarchy of RNN Architectures.
Suzgun, M., Gehrmann, S., Belinkov, Y. and Shieber, S.M., 2019. LSTM networks can perform dynamic counting.
Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., & Baroni, M. (2018). Colorless green recurrent networks dream hierarchically.

Natural and Formal Languages

—]

They say all the prayers those priests preach, and the boy hears were written centuries ago.

nllinllinl

[T CLC)y 1) [()]

Figure 1: Nested dependencies in English sentences and in Dyck-2.

Results on Context-Free Languages

e Prior Results
o LSTMs fail to generalize to higher lengths when trained on Dyck-2

o On natural language data, they are able to model nested dependencies well

e Our Results

o We consider languages with bounded-depth given humans’ cognitive limitations

o We show that RNNs are capable of recognizing Dyck-2 with bounded depth for
arbitrary lengths

o Empirical evaluation shows that they are able to learn and generalize when trained

on data generated from such languages

Results: Expressiveness

Proposition 1. Any Deterministic Pushdown Automaton can be simulated by an
RNN with RelL U activation.™

e Provide a construction to show that RNNs can simulate any PDA
o Implies that they can recognize any deterministic context-free language

e The construction implies that fixed precision RNNs are expressive enough to

recognize strings of arbitrary lengths if depth of the stack is bounded

* The result holds for unbounded precision setting

Setup

e Task: Next Character Prediction
o For agiven sequence s, a model sequentially receives the input
o Ateach step, the model has to predict the next set of legal/valid characters
o Duringinference, a prediction is considered to be correct if and only if a model’s
prediction is correctly at every step
e Some previous works have also considered classification and language modeling
e Next Character Prediction task subsumes classification (recognition)
e Data
o Train set: 10k samples
o Validation set: 2k samples per bin

Results on bounded-depth CFLs

Language Model Vanilla (Randomly Sampled) Bounded Depth
Bin-1A Accuracy Bin-2A Accuracy Bin-1B Accuracy Bin-2B Accuracy Bin-3B Accuracy
[2, 5011 [52, 100]1 [2, 50] [52, 100]1 [102, 150]1
Dvek-2 LSTM 99.5 751 99.9 99.6 96.0
g Transformer 95.1 21.8 99.9 92.1 36.3
_. LSTM 97.3 540 3 99.7 96.3 89.5
yek Transformer 87.7 ; 90.1 489 6.4
Dveled LSTM 97.8 50.7 99.9 95.1 87.0
4 Transformer 92.7 36.6 94.4 49.3 5.6

Results: Generalization across Depth

Generalization Across Depths for Dyck-2

120
100 99.899.8 HLSTM
B Transformer
Z 80
©
S 60 54.9
S
< 40 34.1
0
Training Depth= Depth= Depth= Depth= Depth=
Depths 16 17 18 19 20
i.e.[1,15]

Figure 2: Generalization of LSTMs and Transformers on higher depths. The lengths of strings in the
training set and all validation sets were fixed to lie between 2 to 100.

° Hewitt, J., Hahn, M., Ganguli, S., Liang, P., & Manning, C. D. RNNs can generate bounded hierarchical languages
with optimal memory. EMNLP 2020

° Yao, S., Peng, B., Papadimitriou, C. and Narasimhan, K., 2021. Self-Attention Networks Can Process Bounded
Hierarchical Languages. ACL 2021

Results for Transformers

e On the Ability and Limitations of Transformers to Recognize Formal Languages. EMNLP 2020
e On the Computational Power of Transformers and its Implications in Sequence Modeling.
CoNLL 2020

Turing-Completeness of RNNs and Transformers

e RNNs have been shown to be ==
Forward
Turing-complete [1] T
e Recently, Transformers have also been e ||| [P
. Forward 7 7 Nx
proved to be Turing-complete [2][3] = =
Nx | —»(CAdd & Norm) = :rm
e Compared to RNNs, Transformers T i
. Attention Attention
At At
consist of several components ! =)
Ercoding Q9 & Encodng
Input QOutput
Embedding Embedding

[1]Hava T Siegelmann and Eduardo D Sontag. 1992. On the computational power of neural nets. Computational learning theory, pages 440-449. ACM.
[2] Jorge Perez, Javier Marinkovic, and Pablo Barcelo. 2019. On the turing completeness of modern neural network architectures. In ICLR

[3] Satwik Bhattamishra, Arkil Patel, Navin Goyal. 2020. On the Computational Power of Transformers and its Implications in Sequence Modeling. In CoNLL

Results: Components of Transformer

N
—T T
|
Feed Forward |
Network |
|
——
-
Decoder-Encoder
Feed Forward Attention Head
Network
Encoder-Encoder Decoder-Decoder
Attention Head Attention Head
S
i ——
_ _ J
Positional G) E Positional
Encoding 9 E Encoding

Input
Embedding

Output
Embedding

The Chomsky Hierarchy

Recursively Enumerable

Context-Sensitive

Context-Free

Regular

Counter

Figure 1: Counter languages form a strict superset of
regular languages, and are a strict subset of context-
sensitive languages. Counter and context-free lan-
guages have a nonempty intersection and neither set is
contained in the other.

Counter Languages

e Dyck-1
o Well-balanced parenthesis with a single type of bracket

o Example: (()())()
o Although context-free, it can be solved by counting and comparing the number of
open and closing brackets at each step
o Do not necessarily need to emulate stack-like mechanism unlike Dyck-2
e Other Examples
o a"b"
o anb2n

o a"b"c"

Our Results on Counter Languages

e We show that Transformers can recognize a subclass of Counter Languages

e Empirical evaluation shows that they are able to learn and generalize well on such

languages

e Mechanism learned by the model is similar to our construction and hence correct

Results on Counter Languages

Language Model Bin-1 Accuracy Bin-2 Accuracy Bin-3 Accuracy
[1, 5011 [51, 100]1 [101, 150]1
LSTM (Baseline) 100.0 100.0 100.0
Shuffle-2 Transformer (Absolute Positional Encodings) 100.0 85.2
Transformer (Relative Positional Encodings) 100.0 Lo 3.8,
Transformer (Only Positional Masking) 100.0 1000 L 93.0
LSTM (Baseline) 100.0 100.0 99.7
BoolExp-3 Transformer (Absolute Positional Encodings) 100.0 90.6
Transformer (Relative Positional Encodings) 100.0 960
Transformer (Only Positional Masking) 100.0 1000 9.8
LSTM (Baseline) 100.0 100.0 97.8
ab" ™ Transformer (Absolute Positional Encodings) 100.0 62.1 5.3
Transformer (Relative Positional Encodings) 100.0 A3, ey
Transformer (Only Positional Masking) 100.0 100 }00.0,,

Results on Regular languages

Transformer LSTM
Language Star- Bin 0 Bin 1 Bin 0 Bin 1
Free
Tomita 1 v 100.0 100.0 100.0 100.0
Tomita 2 v 100.0 | 100.0 100.0
Tomita 3 X 75.4 10.8 100.0 100.0
Tomita 4 v 100.0 92.4 100.0 100.0
Tomita 5 X 29.3 0.0, 100.0 100.0
Tomita 6 X 88.8 0.0 100.0 100.0
Tomita 7 v 100.0 100.0 100.0 100.0

Hierarchies within regular languages

Star-free Languages

e Can be defined using regular expressions without Kleene star operator
e Cannot represent language that involve modular counting or periodicity
e Examples
o (ab)* = (bg® + g“a+gaas®+a°bbg®)°
o (a(ab)*b)*

Non-star-free Languages

e Examples

o (aa)*
o (abab)*
o Parity

Regular Languages

Results on Regular Languages

Transformer LSTM
Language Property Bin 0 Bin 1 Bin 0 Bin 1
Parity non-SF 68.7 (23.0) 0.0 (0.0) 100.0 100.0
Non Star-free (aa)™ non-SF 100 (1.3) 0.0 (0.0) 100.0 100.0
Languages (abab)* non-SF 100.0(9.9) 5.4(0.0) 100.0 100.0
D, depth-1 100.0 100.0 100.0 100.0
LStar-free Do depth-2 74.6 8.1 100.0 100.0
anguages Dy depth -4 90.2 3.3 100.0 100.0

Takeaways

e RNNs
o Very powerful in both finite and infinite precision settings

o In Finite Precision: Regular language

o Context-free and Counter Languages to a certain extent

e Transformers (Encoder only model)
o Can recognize a subclass of counter languages such as Dyck-1, n-ary expression

o But are limited in recognizing certain regular languages such as non-star-free and
star-free with high dot-depth
o Overall - Clearly limited compared to RNNs/LSTMs

Questions

e Why do Transformers perform so well in practice despite limitations?
o Efficiency in Training?
o Less sensitive towards single input change
o Less prone to overfitting at scale
o Capturing long range dependencies better

e Implications on programming languages

Current Work

. Synthesis

Thank You

