On the Ability of Neural Sequence Models to Recognize Formal Languages

Satwik Bhattamishra

Microsoft Research India

The Chomsky Hierarchy

Analysis on Formal languages

- Ability of networks such as RNNs and Transformers to recognize regular languages, context-free languages, etc.
- Provide us a controlled setting to understand a network's ability to model syntactic properties in isolation.
- Given a sequence *s*, classify whether *s* belongs to a language *L* or not.
- Inferences can be drawn *only about syntax*.

Examples of Formal Languages

- Regular
 - Parity : 110010101 (number of ones are always even)
 - Recognizable by finite automata
 - Representable by regular expressions
- Context-free
 - o aⁿbⁿ
 - Dyck-1:(()())()
 - Compare the number of open open and closed parenthesis
 - Dyck-2:[()[]]()
 - Also track the type of brackets

Natural and Formal Languages

Figure 1: Nested dependencies in English sentences and in Dyck-2.

Background

Computational Power

- Expressiveness
- Learnability
- Learning and Generalization in practice

RNNs

Transformer

Results for RNNs

• On the Practical Ability of Recurrent Neural Networks to Recognize Hierarchical Languages. COLING 2020

Background: RNNs

- Work in late 20th Century
 - Different Variants NARX, Cascade Correlation, Elman RNNs
 - TC results (Siegelmann and Sontag, 1992)
 - Regular language in finite precision (Giles, 1995)
 - Several Other works (Kolen and Kremer, 2001)

- 1. John F Kolen and Stefan C Kremer. 2001. A field guide to dynamical recurrent networks. John Wiley & Sons.
- 2. Siegelmann, Hava T., and Eduardo D. Sontag. "On the computational power of neural nets." Proceedings of the fifth annual workshop on Computational learning theory (COLT). 1992.

Recent Results for RNNs/LSTMs

- Recent Works have drawn close connections with counter automata (Merrill et al. 2020)
- Limited Performance on context-free languages (Suzgun et. al., 2019)
- Effective in modeling hierarchical dependencies in natural language data (Gulordova et. al. 2018)

- 1. Merrill, W., Weiss, G., Goldberg, Y., Schwartz, R., Smith, N. A., & Yahav, E. (2020). A Formal Hierarchy of RNN Architectures.
- 2. Suzgun, M., Gehrmann, S., Belinkov, Y. and Shieber, S.M., 2019. LSTM networks can perform dynamic counting.
- 3. Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., & Baroni, M. (2018). Colorless green recurrent networks dream hierarchically.

Natural and Formal Languages

Figure 1: Nested dependencies in English sentences and in Dyck-2.

Results on Context-Free Languages

- Prior Results
 - LSTMs fail to generalize to higher lengths when trained on Dyck-2
 - On natural language data, they are able to model nested dependencies well
- Our Results
 - We consider languages with bounded-depth given humans' cognitive limitations
 - We show that RNNs are capable of recognizing Dyck-2 with bounded depth for arbitrary lengths
 - Empirical evaluation shows that they are able to learn and generalize when trained on data generated from such languages

Results: Expressiveness

Proposition 1. Any Deterministic Pushdown Automaton can be simulated by an RNN with ReLU activation.*

- Provide a construction to show that RNNs can simulate any PDA
 - Implies that they can recognize any deterministic context-free language
- The construction implies that fixed precision RNNs are expressive enough to recognize strings of arbitrary lengths if depth of the stack is bounded

* The result holds for unbounded precision setting

Setup

- Task: Next Character Prediction
 - For a given sequence *s*, a model sequentially receives the input
 - At each step, the model has to predict the next set of legal/valid characters
 - During inference, a prediction is considered to be correct if and only if a model's prediction is correctly at every step
- Some previous works have also considered classification and language modeling
- Next Character Prediction task subsumes classification (recognition)
- Data
 - Train set: 10k samples
 - Validation set: 2k samples per bin

Results on bounded-depth CFLs

Language	Model	Vanilla (Randomly Sampled)		Bounded Depth			
		Bin-1A Accuracy [2, 50]↑	Bin-2A Accuracy [52, 100]↑	Bin-1B Accuracy [2, 50]↑	Bin-2B Accuracy [52, 100]↑	Bin-3B Accuracy [102, 150]↑	
Dyck-2	LSTM Transformer	99.5 95.1	75.1 21.8	99.9 99.9	99.6 92.1	96.0 36.3	
Dyck-3	LSTM Transformer	97.3 87.7	54.0 26.2	99.7 90.1	96.3 48.9	89.5 0.4	
Dyck-4	LSTM Transformer	97.8 92.7	50.7 36.6	99.9 94.4	95.1 49.3	87.0 5.6	

Results: Generalization across Depth

Figure 2: Generalization of LSTMs and Transformers on higher depths. The lengths of strings in the training set and all validation sets were fixed to lie between 2 to 100.

- Hewitt, J., Hahn, M., Ganguli, S., Liang, P., & Manning, C. D. RNNs can generate bounded hierarchical languages with optimal memory. EMNLP 2020
- Yao, S., Peng, B., Papadimitriou, C. and Narasimhan, K., 2021. Self-Attention Networks Can Process Bounded Hierarchical Languages. ACL 2021

Results for Transformers

- On the Ability and Limitations of Transformers to Recognize Formal Languages. EMNLP 2020
- On the Computational Power of Transformers and its Implications in Sequence Modeling. CoNLL 2020

Turing-Completeness of RNNs and Transformers

- RNNs have been shown to be Turing-complete [1]
- Recently, Transformers have also been proved to be Turing-complete [2][3]
- Compared to RNNs, Transformers consist of several components

[1] Hava T Siegelmann and Eduardo D Sontag. 1992. On the computational power of neural nets. Computational learning theory, pages 440–449. ACM.

[2] Jorge Perez, Javier Marinkovic, and Pablo Barcelo. 2019. On the turing completeness of modern neural network architectures. In ICLR

[3] Satwik Bhattamishra, Arkil Patel, Navin Goyal. 2020. On the Computational Power of Transformers and its Implications in Sequence Modeling. In CoNLL

Results: Components of Transformer

The Chomsky Hierarchy

Figure 1: Counter languages form a strict superset of regular languages, and are a strict subset of context-sensitive languages. Counter and context-free languages have a nonempty intersection and neither set is contained in the other.

Counter Languages

- Dyck-1
 - Well-balanced parenthesis with a single type of bracket
 - Example: (()())()
 - Although context-free, it can be solved by counting and comparing the number of open and closing brackets at each step
 - Do not necessarily need to emulate stack-like mechanism unlike Dyck-2
- Other Examples
 - aⁿbⁿ
 - \circ $a^n b^{2n}$
 - aⁿbⁿcⁿ

Our Results on Counter Languages

- We show that Transformers can recognize a subclass of Counter Languages
- Empirical evaluation shows that they are able to learn and generalize well on such languages
- Mechanism learned by the model is similar to our construction and hence correct

Results on Counter Languages

Language	Model	Bin-1 Accuracy [1, 50]↑	Bin-2 Accuracy [51, 100]↑	Bin-3 Accuracy [101, 150]↑
	LSTM (Baseline)	100.0	100.0	100.0
Shuffle-2	Transformer (Absolute Positional Encodings) Transformer (Relative Positional Encodings) Transformer (Only Positional Masking)	100.0 100.0 100.0	85.2 51.6 100.0	63.3 3.8 93.0
	LSTM (Baseline)	100.0	100.0	99.7
BoolExp-3	Transformer (Absolute Positional Encodings) Transformer (Relative Positional Encodings) Transformer (Only Positional Masking)	100.0 100.0 100.0	90.6 96.0 100.0	51.3 68.4 99.8
	LSTM (Baseline)	100.0	100.0	97.8
$a^n b^n c^n$	Transformer (Absolute Positional Encodings) Transformer (Relative Positional Encodings) Transformer (Only Positional Masking)	100.0 100.0 100.0	62.1 31.3 100.0	5.3 22.0 100.0

Results on Regular languages

			Transformer		LSTM	
Language	Star- Free	Bin 0	Bin 1	Bin 0	Bin 1	
Tomita 1 Tomita 2 Tomita 3 Tomita 4 Tomita 5 Tomita 6	✓ ✓ ✓ × ✓ ×	100.0 100.0 75.4 100.0 29.3 88.8	100.0 100.0 10.8 92.4 0.0 0.0	100.0 100.0 100.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0 100.0 100.0	

Hierarchies within regular languages

Star-free Languages

- Can be defined using regular expressions without Kleene star operator
- Cannot represent language that involve modular counting or periodicity
- Examples
 - $\circ \quad (ab)^* = (b \emptyset^c + \emptyset^c a + \emptyset^c a a \emptyset^c + \emptyset^c b b \emptyset^c)^c$
 - (a(ab)*b)*

Non-star-free Languages

- Examples
 - (aa)*
 - (abab)*
 - Parity

Results on Regular Languages

	-			Transformer		LSTM	
		Language	Property	Bin 0	Bin 1	Bin 0	Bin 1
Non Star-free Languages Star-free		Parity $(aa)^*$ $(abab)^*$ \mathcal{D}_1 \mathcal{D}_2	non-SF non-SF non-SF depth-1 depth-2	68.7 (23.0) 100 (1.3) 100.0 (9.9) 100.0 74.6	$\begin{array}{c} 0.0\ (0.0)\\ 0.0\ (0.0)\\ 5.4\ (0.0)\\ 100.0\\ 3.1\end{array}$	100.0 100.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0 100.0
Languages		${\cal D}_4$	depth -4	90.2	3.3	100.0	100.0

Takeaways

- RNNs
 - Very powerful in both finite and infinite precision settings
 - In Finite Precision: Regular language
 - Context-free and Counter Languages to a certain extent
- Transformers (Encoder only model)
 - Can recognize a subclass of counter languages such as Dyck-1, n-ary expression
 - But are limited in recognizing certain regular languages such as non-star-free and star-free with high dot-depth
 - Overall Clearly limited compared to RNNs/LSTMs

Questions

- Why do Transformers perform so well in practice despite limitations?
 - Efficiency in Training?
 - Less sensitive towards single input change
 - Less prone to overfitting at scale
 - Capturing long range dependencies better
- Implications on programming languages

Thank You